『壹』 什么是虚拟文件系统优点是什么linux常用的文件系统是什么
你好虚拟文件系统(vfs)是由sunicrosystems公司在定义网络文件系统(nfs)时创造的。它是一种用于网络环专境的分布式属文件系统,是允许和操作系统使用不同的文件系统实现的接口。优点是:vfs使linux同时安装、支持许多不同类型的文件系统成为可能。vfs拥有关于各种特殊文件系统的公共界面,如超级块、inode、文件操作函数入口等。实际文件系统的细节,统一由vfs的公共界面来索引,它们对系统核心和用户进程来说是透明的。linux中经常使用reiserfs文件系统
『贰』 NFS网络文件系统配置
配置流程适用于DebianUbuntu等的衍生发行版 Server:Armbian192.168.2.225 Client:Deepin192.168.2.222
增添一行
将 /root/share 共享给192.168.2.222 ,客户端权限rw 其中共享对象可以用通配符,比如 * 代表所有地址。
rw: 读写
ro :只读
fsid=0 : 指定/root/share为nfs的根目录
sync:将数据同步写入内存缓冲区与磁盘中,效率低,但可以保证数据的一致性;
async:是大数据时使用,是先写到缓存区,必要时再写到磁盘里。
all_squash:所有访问用户都映射为匿名用户或用户组; no_all_squash(默认):访问用户先与本机用户匹配,匹配失败后再映射为匿名用户或用户组;
root_squash(默认):将来访的root用户映射为匿名用户或用户组; no_root_squash:来访的root用户保持root帐号权限;
wdelay(默认):检查是否有相关的写操作,如果有则将这些写操作一起执行,这样可以提高效率; no_wdelay:若有写操作则立即执行,应与sync配合使用;
subtree_check :若输出目录是一个子目录,则nfs服务器将检查其父目录的权限; no_subtree_check(默认):即使输出目录是一个子目录,nfs服务器也不检查其父目录的权限,这样可以提高效率;
看到最后有 192.168.2.225:/ 15G 9.3G 5.2G 65% /mnt
不能写入,没有密码
『叁』 基于mogileFS搭建分布式文件系统–海量小文件的存储利器
1.简介
分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。分布式文件系统的设计基于客户机/服务器模式。一个典型的网络可能包括多个供多用户访问的服务器。另外,对等特性允许一些系统扮演客户机和服务器的双重角色。例如,用户可以“发表”一个允许其他客户机访问的目录,一旦被访问,这个目录对客户机来说就像使用本地驱动器一样。
当下我们处在一个互联网飞速发展的信息 社会 ,在海量并发连接的驱动下每天所产生的数据量必然以几何方式增长,随着信息连接方式日益多样化,数据存储的结构也随着发生了变化。在这样的压力下使得人们不得不重新审视大量数据的存储所带来的挑战,例如:数据采集、数据存储、数据搜索、数据共享、数据传输、数据分析、数据可视化等一系列问题。
传统存储在面对海量数据存储表现出的力不从心已经是不争的事实,例如:纵向扩展受阵列空间限制、横向扩展受交换设备限制、节点受文件系统限制。
然而分布式存储的出现在一定程度上有效的缓解了这一问题,之所以称之为缓解是因为分布式存储在面对海量数据存储时也并非十全十美毫无压力,依然存在的难点与挑战例如:节点间通信、数据存储、数据空间平衡、容错、文件系统支持等一系列问题仍处在不断摸索和完善中。
2.分布式文件系统的一些解决方案
Google Filesystem适合存储海量大个文件,元数据存储与内存中
HDFS(Hadoop Filesystem)GFS的山寨版,适合存储大量大个文件
TFS(Taobao Filesystem)淘宝的文件系统,在名称节点上将元数据存储与关系数据库中,文件数量不在受限于名称节点的内容空间,可以存储海量小文件LustreOracle开发的企业级分布式系统,较重量级MooseFS基于FUSE的格式,可以进行挂载使用MogileFS
擅长存储海量的小数据,元数据存储与关系型数据库中
1.简介
MogileFS是一个开源的分布式文件系统,用于组建分布式文件集群,由LiveJournal旗下DangaInteractive公司开发,Danga团队开发了包括 Memcached、MogileFS、Perlbal等不错的开源项目:(注:Perlbal是一个强大的Perl写的反向代理服务器)。MogileFS是一个开源的分布式文件系统。
目前使用 MogileFS 的公司非常多,比如国外的一些公司,日本前几名的公司基本都在使用这个.
国内所知道的使用 MogileFS 的公司有图片托管网站 yupoo又拍,digg, 土豆, 豆瓣,1 号店, 大众点评,搜狗,安居客等等网站.基本很多网站容量,图片都超过 30T 以上。
2.MogileFS特性
1) 应用层提供服务,不需要使用核心组件
2)无单点失败,主要有三个组件组成,分为tracker(跟踪节点)、mogstore(存储节点)、database(数据库节点)
3)自动复制文件,复制文件的最小单位不是文件,而是class
4)传输中立,无特殊协议,可以通过NFS或HTTP实现通信
5)简单的命名空间:没有目录,直接存在与存储空间上,通过域来实现
6)不用共享任何数据
3.MogileFS的组成
1)Tracker–跟踪器,调度器
MogileFS的核心,是一个调度器,mogilefsd进程就是trackers进程程序,trackers的主要职责有:删除数据、复制数据、监控、查询等等.这个是基于事件的( event-based ) 父进程/消息总线来管理所有来之于客户端应用的交互(requesting operations to be performed), 包括将请求负载平衡到多个”query workers”中,然后让 mogilefs的子进程去处理.
mogadm,mogtool的所有操作都要跟trackers打交道,Client的一些操作也需要定义好trackers,因此最好同时运行多个trackers来做负载均衡.trackers也可以只运行在一台机器上,使用负载均衡时可以使用搞一些简单的负载均衡解决方案,如haproxy,lvs,nginx等,
tarcker的配置文件为/etc/mogilefs/mogilefsd.conf,监听在TCP的7001端口
2)Database–数据库部分
主要用来存储mogilefs的元数据,所有的元数据都存储在数据库中,因此,这个数据相当重要,如果数据库挂掉,所有的数据都不能用于访问,因此,建议应该对数据库做高可用
3)mogstored–存储节点
数据存储的位置,通常是一个HTTP(webDAV)服务器,用来做数据的创建、删除、获取,任何 WebDAV 服务器都可以, 不过推荐使用 mogstored . mogilefsd可以配置到两个机器上使用不同端口… mogstored 来进行所有的 DAV 操作和流量,IO监测, 并且你自己选择的HTTP服务器(默认为 perlbal)用来做 GET 操作给客户端提供文件.
典型的应用是一个挂载点有一个大容量的SATA磁盘. 只要配置完配置文件后mogstored程序的启动将会使本机成为一个存储节点.当然还需要mogadm这个工具增加这台机器到Cluster中.
配置文件为/etc/mogilefs/mogstored.conf,监听在TCP的7500端口
4.基本工作流程
应用程序请求打开一个文件 (通过RPC 通知到 tracker, 找到一个可用的机器). 做一个 “create_open” 请求.
tracker 做一些负载均衡(load balancing)处理,决定应该去哪儿,然后给应用程序一些可能用的位置。
应用程序写到其中的一个位置去 (如果写失败,他会重新尝试并写到另外一个位置去).
应用程序 (client) 通过”create_close” 告诉tracker文件写到哪里去了.
tracker 将该名称和域命的名空间关联 (通过数据库来做的)
tracker, 在后台, 开始复制文件,知道他满足该文件类别设定的复制规则
然后,应用程序通过 “get_paths” 请求 domain+key (key == “filename”) 文件, tracker基于每一位置的I/O繁忙情况回复(在内部经过 database/memcache/etc 等的一些抉择处理), 该文件可用的完整 URLs地址列表.
应用程序然后按顺序尝试这些URL地址. (tracker’持续监测主机和设备的状态,因此不会返回死连接,默认情况下他对返回列表中的第一个元素做双重检查,除非你不要他这么做..)
1.拓扑图
说明:1.用户通过URL访问前端的nginx
2.nginx根据特定的挑选算法,挑选出后端一台tracker来响应nginx请求
3.tracker通过查找database数据库,获取到要访问的URL的值,并返回给nginx
4.nginx通过返回的值及某种挑选算法挑选一台mogstored发起请求
5.mogstored将结果返回给nginx
6.nginx构建响应报文返回给客户端
2.ip规划
角色运行软件ip地址反向代理nginx192.168.1.201存储节点与调度节点1
mogilefs192.168.1.202存储节点与调度节点2
mogilefs192.168.1.203数据库节点
MariaDB192.168.1.204
3.数据库的安装操作并为授权
关于数据库的编译安装,请参照本人相关博文http://wangfeng7399.blog.51cto.com/3518031/1393146,本处将不再累赘,本处使用的为yum源的安装方式安装mysql
4.安装mogilefs. 安装mogilefs,可以使用yum安装,也可以使用编译安装,本处通过yum安装
5.初始化数据库
可以看到在数据库中创建了一些表
6.修改配置文件,启动服务
7.配置mogilefs
添加存储主机
添加存储设备
添加域
添加class
8.配置192.168.1.203的mogilefs 。切记不要初始化数据库,配置应该与192.168.1.202一样
9.尝试上传数据,获取数据,客户端读取数据
上传数据,在任何一个节点上传都可以
获取数据
客户端查看数据
我们可以通过任何一个节点查看到数据
要想nginx能够实现对后端trucker的反向代理,必须结合第三方模块来实现
1.编译安装nginx
2.准备启动脚本
3.nginx与mofilefs互联
查看效果
5.配置后端truckers的集群
查看效果
大功告成了,后续思路,前段的nginx和数据库都存在单点故障,可以实现高可用集群
『肆』 两台linux服务器想共享一个磁盘分区,怎么做
1、首先打开电脑的虚拟机,再打开物理机的虚拟网卡。
『伍』 Ceph:一个 Linux PB 级分布式文件系统
Ceph 最初是一项关于存储系统的 PhD 研究项目,由 Sage Weil 在 University of California, Santa Cruz(UCSC)实施。但是到了 2010 年 3 月底,您可以在主线 Linux 内核(从 2.6.34 版开始)中找到 Ceph 的身影。虽然 Ceph 可能还不适用于生产环境,但它对测试目的还是非常有用的。本文探讨了 Ceph 文件系统及其独有的功能,这些功能让它成为可扩展分布式存储的最有吸引力的备选。 “Ceph” 对一个文件系统来说是个奇怪的名字,它打破了大多数人遵循的典型缩写趋势。这个名字和 UCSC(Ceph 的诞生地)的吉祥物有关,这个吉祥物是 “Sammy”,一个香蕉色的蛞蝓,就是头足类中无壳的软体动物。这些有多触角的头足类动物,提供了一个分布式文件系统的最形象比喻。 开发一个分布式文件系统需要多方努力,但是如果能准确地解决问题,它就是无价的。Ceph 的目标简单地定义为: 不幸的是,这些目标之间会互相竞争(例如,可扩展性会降低或者抑制性能或者影响可靠性)。Ceph 开发了一些非常有趣的概念(例如,动态元数据分区,数据分布和复制),这些概念在本文中只进行简短地探讨。Ceph 的设计还包括保护单一点故障的容错功能,它假设大规模(PB 级存储)存储故障是常见现象而不是例外情况。最后,它的设计并没有假设某种特殊工作负载,但是包括适应变化的工作负载,提供最佳性能的能力。它利用 POSIX 的兼容性完成所有这些任务,允许它对当前依赖 POSIX 语义(通过以 Ceph 为目标的改进)的应用进行透明的部署。最后,Ceph 是开源分布式存储,也是主线 Linux 内核(2.6.34)的一部分。 现在,让我们探讨一下 Ceph 的架构以及高端的核心要素。然后我会拓展到另一层次,说明 Ceph 中一些关键的方面,提供更详细的探讨。 Ceph 生态系统可以大致划分为四部分(见图 1):客户端(数据用户),元数据服务器(缓存和同步分布式元数据),一个对象存储集群(将数据和元数据作为对象存储,执行其他关键职能),以及最后的集群监视器(执行监视功能)。 如图 1 所示,客户使用元数据服务器,执行元数据操作(来确定数据位置)。元数据服务器管理数据位置,以及在何处存储新数据。值得注意的是,元数据存储在一个存储集群(标为 “元数据 I/O”)。实际的文件 I/O 发生在客户和对象存储集群之间。这样一来,更高层次的 POSIX 功能(例如,打开、关闭、重命名)就由元数据服务器管理,不过 POSIX 功能(例如读和写)则直接由对象存储集群管理。 另一个架构视图由图 2 提供。一系列服务器通过一个客户界面访问 Ceph 生态系统,这就明白了元数据服务器和对象级存储器之间的关系。分布式存储系统可以在一些层中查看,包括一个存储设备的格式(Extent and B-tree-based Object File System [EBOFS] 或者一个备选),还有一个设计用于管理数据复制,故障检测,恢复,以及随后的数据迁移的覆盖管理层,叫做 Reliable Autonomic Distributed Object Storage (RADOS)。最后,监视器用于识别组件故障,包括随后的通知。 了解了 Ceph 的概念架构之后,您可以挖掘到另一个层次,了解在 Ceph 中实现的主要组件。Ceph 和传统的文件系统之间的重要差异之一就是,它将智能都用在了生态环境而不是文件系统本身。 图 3 显示了一个简单的 Ceph 生态系统。Ceph Client 是 Ceph 文件系统的用户。Ceph Metadata Daemon 提供了元数据服务器,而 Ceph Object Storage Daemon 提供了实际存储(对数据和元数据两者)。最后,Ceph Monitor 提供了集群管理。要注意的是,Ceph 客户,对象存储端点,元数据服务器(根据文件系统的容量)可以有许多,而且至少有一对冗余的监视器。那么,这个文件系统是如何分布的呢? 早期版本的 Ceph 利用在 User SpacE(FUSE)的 Filesystems,它把文件系统推入到用户空间,还可以很大程度上简化其开发。但是今天,Ceph 已经被集成到主线内核,使其更快速,因为用户空间上下文交换机对文件系统 I/O 已经不再需要。 因为 Linux 显示文件系统的一个公共界面(通过虚拟文件系统交换机 [VFS]),Ceph 的用户透视图就是透明的。管理员的透视图肯定是不同的,考虑到很多服务器会包含存储系统这一潜在因素(要查看更多创建 Ceph 集群的信息,见 参考资料 部分)。从用户的角度看,他们访问大容量的存储系统,却不知道下面聚合成一个大容量的存储池的元数据服务器,监视器,还有独立的对象存储设备。用户只是简单地看到一个安装点,在这点上可以执行标准文件 I/O。 Ceph 文件系统 — 或者至少是客户端接口 — 在 Linux 内核中实现。值得注意的是,在大多数文件系统中,所有的控制和智能在内核的文件系统源本身中执行。但是,在 Ceph 中,文件系统的智能分布在节点上,这简化了客户端接口,并为 Ceph 提供了大规模(甚至动态)扩展能力。 Ceph 使用一个有趣的备选,而不是依赖分配列表(将磁盘上的块映射到指定文件的元数据)。Linux 透视图中的一个文件会分配到一个来自元数据服务器的 inode number(INO),对于文件这是一个唯一的标识符。然后文件被推入一些对象中(根据文件的大小)。使用 INO 和 object number(ONO),每个对象都分配到一个对象 ID(OID)。在 OID 上使用一个简单的哈希,每个对象都被分配到一个放置组。 放置组 (标识为 PGID)是一个对象的概念容器。最后,放置组到对象存储设备的映射是一个伪随机映射,使用一个叫做 Controlled Replication Under Scalable Hashing (CRUSH)的算法。这样一来,放置组(以及副本)到存储设备的映射就不用依赖任何元数据,而是依赖一个伪随机的映射函数。这种操作是理想的,因为它把存储的开销最小化,简化了分配和数据查询。 分配的最后组件是集群映射。 集群映射 是设备的有效表示,显示了存储集群。有了 PGID 和集群映射,您就可以定位任何对象。 元数据服务器(cmds)的工作就是管理文件系统的名称空间。虽然元数据和数据两者都存储在对象存储集群,但两者分别管理,支持可扩展性。事实上,元数据在一个元数据服务器集群上被进一步拆分,元数据服务器能够自适应地复制和分配名称空间,避免出现热点。如图 4 所示,元数据服务器管理名称空间部分,可以(为冗余和性能)进行重叠。元数据服务器到名称空间的映射在 Ceph 中使用动态子树逻辑分区执行,它允许 Ceph 对变化的工作负载进行调整(在元数据服务器之间迁移名称空间)同时保留性能的位置。 但是因为每个元数据服务器只是简单地管理客户端人口的名称空间,它的主要应用就是一个智能元数据缓存(因为实际的元数据最终存储在对象存储集群中)。进行写操作的元数据被缓存在一个短期的日志中,它最终还是被推入物理存储器中。这个动作允许元数据服务器将最近的元数据回馈给客户(这在元数据操作中很常见)。这个日志对故障恢复也很有用:如果元数据服务器发生故障,它的日志就会被重放,保证元数据安全存储在磁盘上。 元数据服务器管理 inode 空间,将文件名转变为元数据。元数据服务器将文件名转变为索引节点,文件大小,和 Ceph 客户端用于文件 I/O 的分段数据(布局)。 Ceph 包含实施集群映射管理的监视器,但是故障管理的一些要素是在对象存储本身中执行的。当对象存储设备发生故障或者新设备添加时,监视器就检测和维护一个有效的集群映射。这个功能按一种分布的方式执行,这种方式中映射升级可以和当前的流量通信。Ceph 使用 Paxos,它是一系列分布式共识算法。 和传统的对象存储类似,Ceph 存储节点不仅包括存储,还包括智能。传统的驱动是只响应来自启动者的命令的简单目标。但是对象存储设备是智能设备,它能作为目标和启动者,支持与其他对象存储设备的通信和合作。 从存储角度来看,Ceph 对象存储设备执行从对象到块的映射(在客户端的文件系统层中常常执行的任务)。这个动作允许本地实体以最佳方式决定怎样存储一个对象。Ceph 的早期版本在一个名为 EBOFS 的本地存储器上实现一个自定义低级文件系统。这个系统实现一个到底层存储的非标准接口,这个底层存储已针对对象语义和其他特性(例如对磁盘提交的异步通知)调优。今天,B-tree 文件系统(BTRFS)可以被用于存储节点,它已经实现了部分必要功能(例如嵌入式完整性)。 因为 Ceph 客户实现 CRUSH,而且对磁盘上的文件映射块一无所知,下面的存储设备就能安全地管理对象到块的映射。这允许存储节点复制数据(当发现一个设备出现故障时)。分配故障恢复也允许存储系统扩展,因为故障检测和恢复跨生态系统分配。Ceph 称其为 RADOS(见 图 3 )。 如果文件系统的动态和自适应特性不够,Ceph 还执行一些用户可视的有趣功能。用户可以创建快照,例如,在 Ceph 的任何子目录上(包括所有内容)。文件和容量计算可以在子目录级别上执行,它报告一个给定子目录(以及其包含的内容)的存储大小和文件数量。 虽然 Ceph 现在被集成在主线 Linux 内核中,但只是标识为实验性的。在这种状态下的文件系统对测试是有用的,但是对生产环境没有做好准备。但是考虑到 Ceph 加入到 Linux 内核的行列,还有其创建人想继续研发的动机,不久之后它应该就能用于解决您的海量存储需要了。 Ceph 在分布式文件系统空间中并不是唯一的,但它在管理大容量存储生态环境的方法上是独一无二的。分布式文件系统的其他例子包括 Google File System(GFS),General Parallel File System(GPFS),还有 Lustre,这只提到了一部分。Ceph 背后的想法为分布式文件系统提供了一个有趣的未来,因为海量级别存储导致了海量存储问题的唯一挑战。
『陆』 在Linux下怎样配置NFS(网络文件系统的配置和实现文件共享)
方法/步骤首先确认自己的服务器上面是否有portmap和nfs包,一般情况下都会有.查询命令:rpm-qa|grepportmaprpm-qa|grepnfs如果有就接着向下走启动portmap和nfs,但是portmap的先于nfs启动,因为portmap为nfs动态分配端口查看是有启动正常用如下命令prcinfo-p如果看到portmap和nfs表示启动正常设置你要共享的文件和目录编辑vi/etc/exports格式如下:共享目录允许访问的主机ip(权限)输出共享目录和文件1.要不重启nfs服务2.使用exportfs-rv命令接着到另一台服务器上面去挂载nfs服务器输出的文件和目录1.新建你要挂载的目录2.查看nfs服务器的输出目录showmount-enfs的ip挂载目录或文件格式如下:mountnfs服务器地址:/usr/local/web/mnt/websites查看挂载结果df-h测试共享时候成功,在web1上面下面的挂载目录下面新建一个文件然后随便写点东西看web2上面时候同步卸载目录的命令:umount/mnt/websites
『柒』 linux vfs是什么什么原理
VFS(Virtual Filesystem Switch他表示虚拟文件系统,只有在系统运行时才存在。所谓VFS就是Virtual File System虚拟文件系统,也称为虚拟文件系统开关( Filesystem Switch). 这是Linux档案系统对外的接口。任何要使用档案系统的程序都必须经由这层接口来使用它。 VFS是一个异构文件系统之上的软件粘合层(注:有时也把VFS称为可堆叠的文件系统(Stackable Filesystem),因为VFS可以无缝地使用多个不同类型的文件系统,就像把多个文件系统堆叠在一起一样,故而得名)。通过VFS,可以为访问文件系统的系统调用提供一个统一的抽象接口。 VFS最早由Sun公司提出以实现NFS(Network FileSystem,网络文件系统)。但是现在很多Unix系统都采用了VFS(包括Linux、FreeBSD、Solaris等)。 Linux下的VFS: VFS的作用就是采用标准的Unix系统调用读写位于不同物理介质上的不同文件系统。VFS是一个可以让open()、read()、write()等系统调用不用关心底层的存储介质和文件系统类型就可以工作的粘合层。在古老的DOS操作系统中,要访问本地文件系统之外的文件系统需要使用特殊的工具才能进行。而在Linux下,通过VFS,一个抽象的通用访问接口屏蔽了底层文件系统和物理介质的差异性。 每一种类型的文件系统代码都隐藏了实现的细节。因此,对于VFS层和内核的其它部分而言,每一种类型的文件系统看起来都是一样的。 在Linux中,VFS采用的是面向对象的编程方法。