⑴ 统计项目的数据展示手机端的软件有哪些
AppStore里可以搜到效率类的软件有很多,有个人提醒用的,有企业协同用的,据我了解,如果是有项目统计等场景需求的话,可以尝试下thinkine,手机端可以点击折叠列表或百分比图查看项目的进度情况,也可以手机端下载文件。
⑵ 类似excel,可以统计分析数据的有什么软件呢
统计分析数据的软件有excel,spss,finereport等其中excel我就不多说了很多人都是非常熟悉的;内SPSS是世界上最早采用图形容菜单驱动界面的统计软件,采用类似excel表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的,较为成熟的统计过程,完全可以满足大部分的工作需要。LFineReport类excel设计模式,excel+绑定数据列,形式持多sheet和跨sheet计算,完美兼容excel公式,用户可以所见即所得的设计出任意复杂的表样,轻松实现中国式复杂报表。它的功能也是非常的丰富,比如说数据支持和整合,聚合报表,数据地图,flash打印,交互分析等。
⑶ 用什么软件做数据统计
用Microsoft Office Excel、spss软件做数据统计。
Microsoft Excel是Microsoft为使用Windows和Apple Macintosh操作系统的电脑编写的一款电子表格软件。
SPSS(Statistical Proct and Service Solutions),“统计产品与服务解决方案”软件。最初软件全称为“社会科学统计软件包”(SolutionsStatistical Package for the Social Sciences)。
但是随着SPSS产品服务领域的扩大和服务深度的增加,SPSS公司已于2000年正式将英文全称更改为“统计产品与服务解决方案”,这标志着SPSS的战略方向正在做出重大调整。
SPSS为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,有Windows和Mac OS X等版本。
(3)有什么app可以统计参军数据扩展阅读
SPSS for Windows为一个组合式软件包,它集数据录入、整理、分析功能于一身。用户可以根据实际需要和计算机的功能选择模块,以降低对系统硬盘容量的要求,有利于该软件的推广应用。SPSS的基本功能包括数据管理、统计分析、图表分析、输出管理等等。
SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类,每类中又分好几个统计过程。
比如回归分析中又分线性回归分析、曲线估计、Logistic回归、Probit回归、加权估计、两阶段最小二乘法、非线性回归等多个统计过程,而且每个过程中又允许用户选择不同的方法及参数。SPSS也有专门的绘图系统,可以根据数据绘制各种图形。
⑷ app数据统计分析工具有哪些
①友盟+
友盟+是2016年初由友盟、CNZZ、缔元信.网络数据三家阿里巴巴旗下的大数据公司合并而成。平台拥有大而全的产品线,是专注用户行为统计的综合性平台,主要涵盖移动应用、游戏、广告、网站等领域。
在App统计方面,友盟提供了移动统计、游戏统计、移动广告监测三个细分产品,可以根据需求选择对应的产品类型,游戏统计维度齐全,除了常规渠道指标外,还自带关卡、等级、付费等特色场景分析;广告监测主要提供短链和信息流广告的数据分析,也能自主制定推广计划。接下来主要介绍其移动应用统计方面的优势。
②Talking Data 移动统计分析
Talking Data 早期主要在游戏以及互联网金融等垂直领域耕耘,在这些方面拥有比较完整的指标和维度,同样划分游戏运营分析、应用统计分析、移动广告监测等应用统计服务。移动统计分析(App Analytics)是Talking Data 2012年2月上线的产品,目前该产品提供包括App以及小程序的相关数据统计服务。
Talking Data 的移动统计分析功能把应用分析、推送营销、开发助手、应用管理分成导航入口,并设计邀请协作功能,偏向于数据共享,能将领导、开发和运营人员纳入到一张办公桌上。
③openinstall App渠道统计
openinstall 是一种不需要制作渠道包,也不需要填写渠道识别码即可识别App安装渠道来源的渠道统计工具。因此,openinstall能够实现仅凭App安装渠道链接就能统计渠道效果的功能,摆脱了人工制作渠道包和填写渠道识别码,使用openinstall 程序化自动生成的渠道链接,可以实现(数量级为亿的)海量用户在免填邀请码的情况下开展的有奖拉新活动(本质上是视每个用户为一个渠道,并自动为每个用户生成一个渠道链接进行渠道效果统计)。
openinstall 的统计后台分三个模块:应用信息、应用集成、渠道统计。与其他综合性应用统计工具相比,openinstall 主要在渠道统计这一领域的需求进行细化深挖,集成使用上十分简单,基本沿着开发者的操作顺序进行:集成开发—渠道统计—渠道管理—查看报表,基本上一眼就能看懂。另外用户自定义方面也比较方便灵活,可以通过api 获取渠道参数,用户可以根据推广需求来定制自己的推广页,数据的统计也可以对接到自己的后台。
⑸ 有哪些好的app数据分析工具推荐吗
有哪些好的app数据分析工具推荐吗
未至科技魔方是一款大数据模型平台,是一款基于服务总线与分布式云计算两大技术架构的一款数据分析、挖掘的工具平台,其采用分布式文件系统对数据进行存储,支持海量数据的处理。采用多种的数据采集技术,支持结构化数据及非结构化数据的采集。通过图形化的模型搭建工具,支持流程化的模型配置。通过第三方插件技术,很容易将其他工具及服务集成到平台中去。数据分析研判平台就是海量信息的采集,数据模型的搭建,数据的挖掘、分析最后形成知识服务于实战、服务于决策的过程,平台主要包括数据采集部分,模型配置部分,模型执行部分及成果展示部分等。
App数据分析,有没有好的工具推荐?
方法/步骤 行业数据 行业数据对于一个APP来说,至关重要。了解行业数据,可以知道自己的APP在整个行业的水平,可以从新增用户、活跃用户、启动次数、使用时长等多个维度去对比自己产品与行业平均水平的差异以及自己产品的对应的指标在整个行业的排名,从而知道自己产品的不足之处。这种纵向的对比,会让自己的产品定位、发展方向更加清晰。 评估渠道效果 在国内,获取用户的渠道是非常多的,如微博、微信、运营商商店、操作系统商店、应用商店、手机厂商预装、CPA广告、交叉推广、限时免费等等。看一个APP的数据,首先要知道用户从哪里来,哪里的用户质量最高,这样开发者就会面临一个选择和评估渠道的难问题。但是通过统计分析工具,开发者可以从多个维度的数据来对比不同渠道的效果,比如从新增用户、活跃用户、次日留存率、单次使用时长等角度对比不同来源的用户,这样就可以根据数据找到最适合自身的渠道,从而获得最好的推广效果。 用户分析 产品吸引到用户下载和使用之后,首先要知道的就是用户是谁。所以,我们需要详尽地了解到用户的设备终端类型、网络及运营商、地域的分布特征。这些数据可以帮助了解用户的属性,在产品改进以及产品推广中,就可以充分利用这些数据制定精准的策略。 用户行为分析 在关注完用户的属性后,我们还要高度关注用户在应用内的行为,因为这些行为最终决定着产品所能够带来的价值。开发者可以通过设置自定义事件以及漏斗来关注应用内每一步的转化率,以及转化率对收入水平的影响。通过分析事件和漏斗数据,可以针对性的优化转化率低的步骤,切实提高整体转化水平。 5 产品受欢迎程度 在了解了用户的行为之后,我们应该看一下自己的产品是否足够受欢迎,这是一个应用保持生命力的根本。开发者可以从留存用户、用户参与度(使用时长、使用频率、访问页面、使用间隔)等维度评价用户粘度。进行数据对比分析的时候,要充分利用时间控件和渠道控件,可以对比不同时段不同渠道的用户粘度,了解运营推广手段对不同渠道的效果。 如果以上5点的数据都很漂亮,说明你的APP已经做得相当不错了。当然,如果你的APP还没有给你带来收入,那么你仍然有一段较长的路要走。
app日活数据分析工具有哪些?
app日活数据分析工具有上海风述科技的app先知。
APP运营数据分析工具有哪些?
目前国内发展不错的可以监测web、app、流媒体等多种应用性能监测服务,叫“云测宝”。
云测试、友盟
云测试主要为开发者提供自动化的移动APP测试,包括功能、UI、性能、稳定性、安全和竞争测试,返回包括日志和截图的详细测试报告,支持iOS和Android两大平台。 云测宝主要通过分布全球真实网络中的真实终端,监测用户访问移动应用App、HTML5、移动Web的真实体验数据,从最终用户的视角跨越移动设备、网络和国家地区范围,从移动“端”侧对移动互联网的“云”服务性能进行监测与评估,使移动业务用户所获得体验效果达到最大。 友盟是为中国开发者定制的灵活、简单、免费、跨平台的移动应用统计分析工具。 三个产品从不同的
数据分析工具有哪些 python
IPython
IPython 是一个在多种编程语言之间进行交互计算的命令行 shell,最开始是用 python 开发的,提供增强的内省,富媒体,扩展的 shell 语法,tab 补全,丰富的历史等功能。IPython 提供了如下特性: 更强的交互 shell(基于 Qt 的终端) 一个基于浏览器的记事本,支持代码,纯文本,数学公式,内置图表和其他富媒体 支持交互数据可视化和图形界面工具 灵活,可嵌入解释器加载到任意一个自有工程里 简单易用,用于并行计算的高性能工具 由数据分析总监,Galvanize 专家 Nir Kaldero 提供。
GraphLab Greate 是一个 Python 库,由 C++ 引擎支持,可以快速构建大型高性能数据产品。 这有一些关于 GraphLab Greate 的特点: 可以在您的计算机上以交互的速度分析以 T 为计量单位的数据量。 在单一平台上可以分析表格数据、曲线、文字、图像。 最新的机器学习算法包括深度学习,进化树和 factorization machines 理论。 可以用 Hadoop Yarn 或者 EC2 聚类在你的笔记本或者分布系统上运行同样的代码。 借助于灵活的 API 函数专注于任务或者机器学习。 在云上用预测服务便捷地配置数据产品。 为探索和产品监测创建可视化的数据。 由 Galvanize 数据科学家 Benjamin Skrainka 提供。 Pandas pandas 是一个开源的软件,它具有 BSD 的开源许可,为 Python 编程语言提供高性能,易用数据结构和数据分析工具。在数据改动和数据预处理方面,Python 早已名声显赫,但是在数据分析与建模方面,Python 是个短板。Pands 软件就填补了这个空白,能让你用 Python 方便地进行你所有数据的处理,而不用转而选择更主流的专业语言,例如 R 语言。 整合了劲爆的 IPyton 工具包和其他的库,它在 Python 中进行数据分析的开发环境在处理性能,速度,和兼容方面都性能卓越。Pands 不会执行重要的建模函数超出线性回归和面板回归;对于这些,参考 stat *** odel 统计建模工具和 scikit-learn 库。为了把 Python 打造成顶级的统计建模分析环境,我们需要进一步努力,但是我们已经奋斗在这条路上了。 由 Galvanize 专家,数据科学家 Nir Kaldero 提供。 PuLP 线性编程是一种优化,其中一个对象函数被最大程度地限制了。PuLP 是一个用 Python 编写的线性编程模型。它能产生线性文件,能调用高度优化的求解器,GLPK,COIN CLP/CBC,CPLEX,和GUROBI,来求解这些线性问题。 由 Galvanize 数据科学家 Isaac Laughlin 提供 Matplotlib
matplotlib 是基于 Python 的 2D(数据)绘图库,它产生(输出)出版级质量的图表,用于各种打印纸质的原件格式和跨平台的交互式环境。matplotlib 既可以用在 python 脚本, python 和 ipython 的 shell 界面 (ala MATLAB? 或 Mathematica?),web 应用服务器,和6类 GUI 工具箱。 matplotlib 尝试使容易事情变得更容易,使困难事情变为可能。你只需要少量几行代码,就可以生成图表,直方图,能量光谱(power spectra),柱状图,errorcharts,散点图(scatterplots)等,。 为简化数据绘图,pyplot 提供一个类 MATLAB 的接口界面,尤其是它与 IPython 共同使用时。对于高级用户,你可以完全定制包括线型,字体属性,坐标属性等,借助面向对象接口界面,或项 MATLAB 用户提供类似(MATLAB)的界面。 Galvanize 公司的首席科学官 Mike Tamir 供稿。 Scikit-Learn
Scikit-Learn 是一个简单有效地数据挖掘和数据分析工具(库)。关于最值得一提的是,它人人可用,重复用于多种语境。它基于 NumPy,SciPy 和 mathplotlib 等构建。Scikit 采用开源的 BSD 授权协议,同时也可用于商业。Scikit-Learn 具备如下特性: 分类(Classification) – 识别鉴定一个对象属于哪一类别 回归(Regression) – 预测对象关联的连续值属性 聚类(Clustering) – 类似对象自动分组集合 降维(Dimensionality Rection) – 减少需要考虑的随机变量数量 模型选择(Model Selection) –比较、验证和选择参数和模型 预处理(Preprocessing) – 特征提取和规范化 Galvanize 公司数据科学讲师,Isaac Laughlin提供 Spark
Spark 由一个驱动程序构成,它运行用户的 main 函数并在聚类上执行多个并行操作。Spark 最吸引人的地方在于它提供的弹性分布数据集(RDD),那是一个按照聚类的节点进行分区的元素的集合,它可以在并行计算中使用。RDDs 可以从一个 Hadoop 文件系统中的文件(或者其他的 Hadoop 支持的文件系统的文件)来创建,或者是驱动程序中其他的已经存在的标量数据集合,把它进行变换。用户也许想要 Spark 在内存中永久保存 RDD,来通过并行操作有效地对 RDD 进行复用。最终,RDDs 无法从节点中自动复原。 Spark 中第二个吸引人的地方在并行操作中变量的共享。默认情况下,当 Spark 在并行情况下运行一个函数作为一组不同节点上的任务时,它把每一个函数中用到的变量拷贝一份送到每一任务。有时,一个变量需要被许多任务和驱动程序共享。Spark 支持两种方式的共享变量:广播变量,它可以用来在所有的节点上缓存数据。另一种方式是累加器,这是一种只能用作执行加法的变量,例如在计数器中和加法运算中。
有哪些微博数据分析工具可以推荐
有 在微博里搜索 微知 这个应用。。 可以分析一条微博 被什么人转发 有没有水军 这些
excel数据分析工具的有哪些
SQL 楼主说的工具指的是excel本身的吗 还是指数据分析需要的啊
⑹ 有可以统计app数据的软件
网上有很多数据统计工具,用了很多款,如果您第一次尝试可以用一下Xinstall,可以免费体验。