❶ 信息以文件形式存储,文件用什么分类分层存放
文件、块和对象是三种以不同的方式来保存、整理和呈现数据的存储格式。这些格式各有各的功能和限制。文件存储会以文件和文件夹的层次结构来整理和呈现数据;块存储会将数据拆分到任意划分且大小相同的卷中; 对象存储会管理数据并将其链接至关联的元数据。块存储块存储会将数据拆分成块,并单独存储各个块。每个数据块都有一个唯一标识符,所以存储系统能将较小的数据存放在最方便的位置。这意味着有些数据可以存储在 linux 环境中,有些则可以存储在 Windows 单元中。块存储通常会被配置为将数据与用户环境分离,并会将数据分布到可以更好地为其提供服务的多个环境中。然后,当用户请求数据时,底层存储软件会重新组装来自这些环境的数据块,并将它们呈现给用户。它通常会部署在存储区域网络 (SAN) 环境中,而且必须绑定到正常运行的服务器。由于块存储不依赖于单条数据路径(和文件存储一样),因此可以实现快速检索。每个块都独立存在,且可进行分区,因此可以通过不同的操作系统进行访问,这使得用户可以完全自由地配置数据。它是一种高效可靠的数据存储方式,且易于使用和管理。它适用于要执行大型事务的企业和部署了大型数据库的企业。这意味着,需要存储的数据越多,就越适合使用块存储。块存储有一些缺点。块存储的成本高昂。它处理元数据的能力有限。操作对象:磁盘存储协议:SCSI、iSCSI、FC接口命令:以SCSI为例,主要有Read/Write/Read Capacity存储架构:DAS、SAN文件存储文件存储也称为文件级存储或基于文件的存储,数据会以单条信息的形式存储在文件夹中。当需要访问该数据时,计算机需要知道相应的查找路径。存储在文件中的数据会根据元数据来进行整理和检索,这些元数据会告诉计算机文件所在的确切位置。请试想一下塞满文件柜的储藏室。每个文档都会按照某种类型的逻辑层次结构来排放 ——按文件柜、抽屉、文件夹,然后再是纸张。“分层存储”这个术语就是这么来的,而这就是文件存储。它是适用于直接和网络附加存储(NAS)系统的最古老且运用最为广泛的一种数据存储系统;当访问保存在个人计算机上的文件中的文档,就是在使用文件存储。文件存储具有丰富多样的功能,几乎可以存储任何内容。它非常适合用来存储一系列复杂文件,并且有助于用户快速导航。问题是基于文件的存储系统必须通过添置更多系统来进行横向扩展,而不是通过增添更多容量来进行纵向扩展。操作对象:文件和文件夹存储协议:NFS、SAMBA(SMB)、POSIX接口命令:以NFS为例,文件相关的接口命令包括:READ/WRITE/CREATE/REMOVE/RENAME/LOOKUP/ACCESS 等;文件夹相关的接口命令包括:MKDIR/RMDIR/READDIR 等存储架构:NAS (【Linux】NAS存储_Jacky_Feng的博客-CSDN博客) 对象存储对象存储,也称为基于对象的存储,是一种扁平结构,其中的文件被拆分成多个部分并散布在多个硬件间。在对象存储中,数据会被分解为称为“对象”的离散单元,并保存在单个存储库中,而不是作为文件夹中的文件或服务器上的块来保存。对象存储卷会作为模块化单元来工作:每个卷都是一个自包含式存储库,均含有数据、允许在分布式系统上找到对象的唯一标识符以及描述数据的元数据。元数据包括年龄、隐私/安全信息和访问突发事件等详细信息。为了检索数据,存储操作系统会使用元数据和标识符,这样可以更好地分配负载,并允许管理员应用策略来执行更强大的搜索。对象存储需要一个简单的 HTTP 应用编程接口 (API),以供大多数客户端(各种语言)使用。对象存储经济高效:您只需为已用的内容付费。它可以轻松扩展,因而是公共云存储的理想之选。它是一个非常适用于静态数据的存储系统,其灵活性和扁平性意味着它可以通过扩展来存储极大量的数据。对象具有足够的信息供应用快速查找数据,并且擅长存储非结构化数据。它的缺点是无法修改对象 ,即必须一次性完整地写入对象。对象存储也不能很好地与传统数据库搭配使用,因为编写对象是一个缓慢的过程,编写应用以使用对象存储 API 并不像使用文件存储那么简单。操作对象:对象(Object)存储协议:S3、Swift接口命令:主要有PUT/GET/DELETE等存储架构:去中心化框架对象存储概念对象存储的数据组成 存储桶(Bucket):存放对象的“容器”,且该“容器”无容量上限。对象以扁平化结构存放在存储桶中,无文件夹和目录的概念,用户可选择将对象存放到单个或多个存储桶中。存储桶的容量大小需要通过累加各个对象的大小得到。每个存储桶可容纳任意数量的对象,但同一个主账号下存储桶数量最多仅能够创建200个。(???)对于存储桶,应当以用途为粒度进行划分,确保每个存储桶的用途尽可能单一。例如,针对存放个人文件、发布静态网站、存储备份等用途都应该创建不同的存储桶。此外,不同项目的数据、不同的网站,或者完全私人的文件与工作性质、需要分享的文件,也应该划分不同的存储桶。对象存储中也没有「文件夹」的概念。对象存储的管理平台为了模仿本地存储的使用习惯,并与本地存储系统互相兼容而模拟了目录结构,背后的原理也仅仅是根据 / 这个字符对 key 进行分隔。为了表示空目录,部分云平台也提供「文件夹」对象,实际上只是 key 以 / 结尾的空存储对象。存储桶所在地域(Regin)指对象存储的数据中心所在地域。对象存储允许用户在不同地域创建存储桶,可以选择在离业务最近的地域上创建存储桶,以满足低延迟、低成本以及合规性要求。Bucket读写权限Bucket读写权限包括:私有读写、公有读私有写和公有读写。私有读写只有该存储桶的创建者及有授权的账号才对该存储桶中的对象有读写权限,其他任何人对该存储桶中的对象都没有读写权限。存储桶访问权限默认为私有读写,推荐使用。公有读私有写任何人(包括匿名访问者)都对该存储桶中的对象有读权限,但只有存储桶创建者及有授权的账号才对该存储桶中的对象有写权限。公有读写任何人(包括匿名访问者)都对该存储桶中的对象有读权限和写权限,不推荐使用。 对象(Object):对象存储的基本单元,可理解为任何格式类型的数据,例如图片、文档和音视频文件等。每个对象都由对象键(Key)、对象值(Data)、和对象元数据(Metadata)组成。对象键(Key):对象键是对象在存储桶中的全局唯一标识(UID),可以理解为文件(名)路径。key用于检索对象,文件对象的 key 与实际存储路径无关,服务器和用户不需要知道数据的物理地址,通过key就能找到对象。对象值(Data):即存储对象内容数据,可以理解为文件内容(Object Content)。对象元数据(Metadata):是一组键值对,可以通俗的理解为文件的属性,例如文件的修改时间、存储类型等。(传统的文件存储,元数据属于文件本身,和文件一起封装存储。而对象存储,元数据独立出来,并不在数据内部封装。)对象访问地址对象的访问地址由存储桶访问地址和对象键组成,其结构形式为<存储桶域名>/<对象键> 。例如:上传对象exampleobject.txt到广州(华南)的存储桶examplebucket-1250000000中,那么exampleobject.txt的访问地址是:examplebucket-1250000000.cos.ap-guangzhou.myqcloud.com/exampleobject.txt。其中examplebucket-1250000000.cos.ap-guangzhou.myqcloud.com为存储桶域名,exampleobject.txt为对象键。目录和文件夹对象存储中本身是没有文件夹和目录的概念的,对象存储不会因为上传对象project/a.txt而创建一个project文件夹。为了满足用户使用习惯,对象存储在控制台、COS browser 等图形化工具中模拟了「文件夹」或「目录」的展示方式,具体实现是通过创建一个键值为project/,内容为空的对象,展示方式上模拟了传统文件夹。对象操作用户通过控制台、工具、API、SDK等多种方式管理对象。对象存储架构 对象存储设备(OSD)OSD由存储介质、处理器、内存以及网络系统等组成,负责管理本地的对象,是对象存储系统的核心。和块设备相比,它们的差异在于提供的访问接口。OSD的主要功能是数据存储和安全访问。数据存储:OSD管理对象数据,并将它们放置在标准的磁盘系统上,OSD不提供块接口访问方式,Client请求数据时用对象ID、偏移进行数据读写。智能分布:OSD用其自身的CPU和内存优化数据分布,并支持数据的预取。由于OSD可以智能地支持对象的预取,从而可以优化磁盘的性能。对象元数据管理:OSD管理存储的对象元数据与传统的inode元数据相似,通常包括对象的数据块和对象的长度。而在传统的NAS系统中,这些元数据是由文件服务器维护的,对象存储架构将系统中主要的元数据管理工作由OSD来完成,降低了Client的开销。 元数据服务器(MDS)MDS控制Client与OSD对象的交互,为客户端提供元数据,主要是文件的逻辑视图(文件与目录的组织关系、每个文件所对应的OSD等)。主要功能如下:对象存储访问:MDS构造和管理描述每个文件分布的逻辑视图,允许Client直接访问对象。MDS为Client提供访问该文件所含对象的能力,OSD在接收到每个请求时将先验证该能力,然后才可以访问。文件和目录访问管理:MDS在存储系统上构建一个文件结构,包括限额控制、目录和文件的创建和删除、访问控制等。Client Cache一致性:为了提高Client性能,在对象存储系统设计时通常支持Client方的Cache。由于引入Client方的Cache,带来了Cache一致性问题,MDS支持基于Client的文件Cache,当Cache的文件发生改变时,将通知Client刷新Cache,从而防止Cache不一致引发的问题。 客户端(Client)对象存储系统提供给用户的也是标准的POSIX文件访问接口。接口具有和通用文件系统相同的访问方式,同时为了提高性能,也具有对数据的Cache功能和文件的条带功能。同时,文件系统必须维护不同客户端上Cache的一致性,保证文件系统的数据一致。文件系统读访问流程:① 客户端应用发出读请求;② 文件系统向元数据服务器发送请求,获取要读取的数据所在的OSD;③ 直接向每个OSD发送数据读取请求;④ OSD得到请求以后,判断要读取的Object,并根据此Object要求的认证方式,对客户端进行认证,如果此客户端得到授权,则将Object的数据返回给客户端;⑤ 文件系统收到OSD返回的数据以后,读操作完成。对象存储的优缺点(1)优点:容量大,高扩展性对象存储的容量是EB级以上,对象存储的所有业务、存储节点采用分布式集群方式工作,各功能节点、集群都可以独立扩容。从理论上来说,某个对象存储系统或单个桶(bucket),并没有总数据容量和对象数量的限制,即服务商就可以不停地往架构里增加资源,这个存储空间就是无限的,也是支持弹性伸缩的。高安全性,可靠性对象存储采用了分布式架构,对数据进行多设备冗余存储(至少三个以上节点),实现异地容灾和资源隔离。数据访问方面,所有的桶和对象都有访问控制策略,所有连接都支持SSL加密,访问用户进行身份权限鉴定。高性能,支持海量用户的并发访问(2)缺点:不支持直接在存储上修改对象存储系统保存的Object不支持修改(追加写Object需要调用特定的接口,生成的Object也和正常上传的Object类型上有差别)。用户哪怕是仅仅需要修改一个字节也需要重新上传整个Object。因此,它不适合存储需要频繁擦写的数据。参考链接:对象存储,为什么那么火? – 知乎 (hu.com)对象存储 存储桶概述 – 开发者指南 – 文档中心 – 腾讯云 (tencent.com)基本概念 (aliyun.com)文件存储、块存储还是对象存储? (redhat.com)linux驻马店市民请关注领取补贴!巨魔-抽手机公告广告对比块存储、文件存储、对象存储1242阅读·0评论·3点赞2019年2月27日ShapeFile的文件格式设计90阅读·0评论·0点赞2009年3月20日应用ceph对象存储(ceph-13.2.10)72阅读·0评论·0点赞2022年11月26日三种存储类型比较-文件、块、对象存储4.8W阅读·0评论·13点赞2016年7月26日常见图片存储格式文件简介4534阅读·0评论·0点赞2020年5月4日s3cmd常用命令781阅读·0评论·0点赞2022年11月17日驻马店发布,你有一台5G手机待领取00:23巨摩互动广告常见的存储格式1083阅读·0评论·0点赞2022年2月15日文件、对象、块区别1399阅读·0评论·0点赞2020年7月13日对象存储、文件存储、块存储的区别和联系7330阅读·2评论·5点赞2021年10月16日数据分析中常见的存储方式1537阅读·0评论·0点赞2021年11月16日三种存储类型:块存储、文件存储、对象存储1.5W阅读·3评论·55点赞2020年11月2日如何设计二进制文件格式1940阅读·0评论·1点赞2020年3月6日BMP文件存储格式472阅读·0评论·2点赞2021年8月2日hive 的存储格式1765阅读·0评论·1点赞2022年6月18日数据存储格式446阅读·0评论·0点赞2022年12月21日总结:对象存储、块存储、文件存储的区别6606阅读·0评论·3点赞2022年4月9日c语言中文件rw,什么是“块文件”?386阅读·0评论·0点赞2021年5月23日【存储】块存储、文件存储和对象存储的区别?350阅读·0评论·0点赞2022年7月22日块存储、文件存储与对象存储的区别与应用场景1846阅读·1评论·0点赞2022年6月5日数据在内存中的存储方式272阅读·0评论·0点赞2022年8月21日去首页看看更多热门内容
❷ 大数据时代下的三种存储架构
大数据时代下的三种存储架构_数据分析师考试
大数据时代,移动互联、社交网络、数据分析、云服务等应用的迅速普及,对数据中心提出革命性的需求,存储基础架构已经成为IT核心之一。政府、军队军工、科研院所、航空航天、大型商业连锁、医疗、金融、新媒体、广电等各个领域新兴应用层出不穷。数据的价值日益凸显,数据已经成为不可或缺的资产。作为数据载体和驱动力量,存储系统成为大数据基础架构中最为关键的核心。
传统的数据中心无论是在性能、效率,还是在投资收益、安全,已经远远不能满足新兴应用的需求,数据中心业务急需新型大数据处理中心来支撑。除了传统的高可靠、高冗余、绿色节能之外,新型的大数据中心还需具备虚拟化、模块化、弹性扩展、自动化等一系列特征,才能满足具备大数据特征的应用需求。这些史无前例的需求,让存储系统的架构和功能都发生了前所未有的变化。
基于大数据应用需求,“应用定义存储”概念被提出。存储系统作为数据中心最核心的数据基础,不再仅是传统分散的、单一的底层设备。除了要具备高性能、高安全、高可靠等特征之外,还要有虚拟化、并行分布、自动分层、弹性扩展、异构资源整合、全局缓存加速等多方面的特点,才能满足具备大数据特征的业务应用需求。
尤其在云安防概念被热炒的时代,随着高清技术的普及,720P、1080P随处可见,智能和高清的双向需求、动辄500W、800W甚至上千万更高分辨率的摄像机面市,大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
目前市场上的存储架构如下:
(1)基于嵌入式架构的存储系统
节点NVR架构主要面向小型高清监控系统,高清前端数量一般在几十路以内。系统建设中没有大型的存储监控中心机房,存储容量相对较小,用户体验度、系统功能集成度要求较高。在市场应用层面,超市、店铺、小型企业、政法行业中基本管理单元等应用较为广泛。
(2)基于X86架构的存储系统
平台SAN架构主要面向中大型高清监控系统,前端路数成百上千甚至上万。一般多采用IPSAN或FCSAN搭建高清视频存储系统。作为监控平台的重要组成部分,前端监控数据通过录像存储管理模块存储到SAN中。
此种架构接入高清前端路数相对节点NVR有了较高提升,具备快捷便利的可扩展性,技术成熟。对于IPSAN而言,虽然在ISCSI环节数据并发读写传输速率有所消耗,但其凭借扩展性良好、硬件平台通用、海量数据可充分共享等优点,仍然得到很多客户的青睐。FCSAN在行业用户、封闭存储系统中应用较多,比如县级或地级市高清监控项目,大数据量的并发读写对千兆网络交换提出了较大的挑战,但应用FCSAN构建相对独立的存储子系统,可以有效解决上述问题。
面对视频监控系统大文件、随机读写的特点,平台SAN架构系统不同存储单元之间的数据共享冗余方面还有待提高;从高性能服务器转发视频数据到存储空间的策略,从系统架构而言也增加了隐患故障点、ISCSI带宽瓶颈导致无法充分利用硬件数据并发性能、接入前端数据较少。上述问题催生了平台NVR架构解决方案。
该方案在系统架构上省去了存储服务器,消除了上文提到的性能瓶颈和单点故障隐患。大幅度提高存储系统的写入和检索速度;同时也彻底消除了传统文件系统由于供电和网络的不稳定带来的文件系统损坏等问题。
平台NVR中存储的数据可同时供多个客户端随时查询,点播,当用户需要查看多个已保存的视频监控数据时,可通过授权的视频监控客户端直接查询并点播相应位置的视频监控数据进行历史图像的查看。由于数据管理服务器具有监控系统所有监控点的录像文件的索引,因此通过平台CMS授权,视频监控客户端可以查询并点播整个监控系统上所有监控点的数据,这个过程对用户而言也是透明的。
(3)基于云技术的存储方案
当前,安防行业可谓“云”山“物”罩。随着视频监控的高清化和网络化,存储和管理的视频数据量已有海量之势,云存储技术是突破IP高清监控存储瓶颈的重要手段。云存储作为一种服务,在未来安防监控行业有着客观的应用前景。
与传统存储设备不同,云存储不仅是一个硬件,而是一个由网络设备、存储设备、服务器、软件、接入网络、用户访问接口以及客户端程序等多个部分构成的复杂系统。该系统以存储设备为核心,通过应用层软件对外提供数据存储和业务服务。
一般分为存储层、基础管理层、应用接口层以及访问层。存储层是云存储系统的基础,由存储设备(满足FC协议、iSCSI协议、NAS协议等)构成。基础管理层是云存储系统的核心,其担负着存储设备间协同工作,数据加密,分发以及容灾备份等工作。应用接口层是系统中根据用户需求来开发的部分,根据不同的业务类型,可以开发出不同的应用服务接口。访问层指授权用户通过应用接口来登录、享受云服务。其主要优势在于:硬件冗余、节能环保、系统升级不会影响存储服务、海量并行扩容、强大的负载均衡功能、统一管理、统一向外提供服务,管理效率高,云存储系统从系统架构、文件结构、高速缓存等方面入手,针对监控应用进行了优化设计。数据传输可采用流方式,底层采用突破传统文件系统限制的流媒体数据结构,大幅提高了系统性能。
高清监控存储是一种大码流多并发写为主的存储应用,对性能、并发性和稳定性等方面有很高的要求。该存储解决方案采用独特的大缓存顺序化算法,把多路随机并发访问变为顺序访问,解决了硬盘磁头因频繁寻道而导致的性能迅速下降和硬盘寿命缩短的问题。
针对系统中会产生PB级海量监控数据,存储设备的数量达数十台上百台,因此管理方式的科学高效显得十分重要。云存储可提供基于集群管理技术的多设备集中管理工具,具有设备集中监控、集群管理、系统软硬件运行状态的监控、主动报警,图像化系统检测等功能。在海量视频存储检索应用中,检索性能尤为重要。传统文件系统中,文件检索采用的是“目录-》子目录-》文件-》定位”的检索步骤,在海量数据的高清视频监控,目录和文件数量十分可观,这种检索模式的效率就会大打折扣。采用序号文件定位可以有效解决该问题。
云存储可以提供非常高的的系统冗余和安全性。当在线存储系统出现故障后,热备机可以立即接替服务,当故障恢复时,服务和数据回迁;若故障机数据需要调用,可以将故障机的磁盘插入到冷备机中,实现所有数据的立即可用。
对于高清监控系统,随着监控前端的增加和存储时间的延长,扩展能力十分重要。市场中已有友商可提供单纯针对容量的扩展柜扩展模式和性能容量同步线性扩展的堆叠扩展模式。
云存储系统除上述优点之外,在平台对接整合、业务流程梳理、视频数据智能分析深度挖掘及成本方面都将面临挑战。承建大型系统、构建云存储的商业模式也亟待创新。受限于宽带网络、web2.0技术、应用存储技术、文件系统、P2P、数据压缩、CDN技术、虚拟化技术等的发展,未来云存储还有很长的路要走。
以上是小编为大家分享的关于大数据时代下的三种存储架构的相关内容,更多信息可以关注环球青藤分享更多干货
❸ 目前有哪些主流存储技术
虚拟化(主机、存储、网络的虚拟化)、分布式存储和计算。更加厉害的是云计算运营模式的创新
❹ 海量数据存储有哪些方式与方法
从数据存储的模式来看,海量存储技术可以分为DAS(Direct Attached Storage,直接附加存储)和网络存专储两种,其中网络存储又可以分为NAS(Network Attached storage,网属络附加存储)和SAN(Storage Area Net、Work,存储区域网络)。 从数据存储系统的组成上看,无论是DAS、NAS还是SAN,其存储系统都可以分为三个部分:首先是磁盘阵列,它是存储系统的基础,是完成数据存储的基本保证;其次是连接和网络子系统,通过它们实现了一个或多个磁盘阵列与服务器之间的连接;最后是存储管理软件,在系统和应用级上,实现多个服务器共享、防灾等存储管理任务。如果需要更多资料可以追问